Kalman filter estimation for periodic autoregressive-moving average models
Abstract:
An exact maximum likelihood procedure is presented for estimating the parameters of a periodic autogressive-moving average (PARMA) model. To develop an estimator which is both statistically and computationally efficient, the PARMA class of models is written using a state-space representation and a Kalman filtering algorithm is used to estimate the parameters. In order to demonstrate how to fit PARMA models in practice, the most appropriate types of PARMA models are identified for fitting to two average monthly riverflow time series and the new estimator is employed for estimating the model parameters. © 1989 Springer-Verlag.
Año de publicación:
1989
Keywords:
- Periodic models
- Kalman filter
- maximum likelihood estimation
- Stochastic hydrology
- time series analysis
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Algoritmo
- Optimización matemática
- Inferencia estadística
Áreas temáticas:
- Programación informática, programas, datos, seguridad