Kernel machines for non-vectorial data
Abstract:
This work presents a short introduction to the main ideas behind the design of specific kernel functions when used by machine learning algorithms, for example support vector machines, in the case that involved patterns are described by non-vectorial information. In particular the interval data case will be analysed as an illustrating example: explicit kernels based on the centre-radius diagram will be formulated for closed bounded intervals in the real line. © Springer-Verlag Berlin Heidelberg 2007.
Año de publicación:
2007
Keywords:
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
Áreas temáticas:
- Ciencias de la computación