LDC: Lightweight Dense CNN for Edge Detection


Abstract:

This paper presents a Lightweight Dense Convolutional (LDC) neural network for edge detection. The proposed model is an adaptation of two state-of-the-art approaches, but it requires less than 4% of parameters in comparison with these approaches. The proposed architecture generates thin edge maps and reaches the highest score (i.e., ODS) when compared with lightweight models (models with less than 1 million parameters), and reaches a similar performance when compare with heavy architectures (models with about 35 million parameters). Both quantitative and qualitative results and comparisons with state-of-the-art models, using different edge detection datasets, are provided. The proposed LDC does not use pre-trained weights and requires straightforward hyper-parameter settings.

Año de publicación:

2022

Keywords:

  • edge detection
  • deep learning
  • boundary detection

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Visión por computadora
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales