LIFE CYCLE ASSESSMENT of A HOUSEHOLD in ECUADOR


Abstract:

The life cycle assessment (LCA) of a middle-class household of 5 members in Guayaquil, Ecuador was performed in order to identify the life cycle stages and activities with higher environmental burdens. LCA is a quantitative tool for assessing the environmental performance of products or systems during its life span, through the compilation and further evaluation of the inputs, outputs, and potential environmental impacts The life cycle of the house included a 50-year lifespan house divided into three stages: pre-occupation, occupation, and postoccupation stage. The type of house chosen for the analysis represents the current trend of urban growth and planning of the city, which is pointing towards residential zones and housing plans far away from central areas. The notion of household metabolism is associated with the occupation stage. Household metabolism refers to all flows of matter and energy related to anthropogenic activities conducted on a household, which is a socio-economic entity that consists of people living together occupying a dwelling or part of it. Households are key entities of the anthroposphere because the sum of all private households is the process on which all other processes depend on and serve directly or indirectly. The total energy use and emissions for which the sum of households is responsible reflects the importance of considering its influence when assessing the environmental impact of dwellings. Five energy case scenarios were analyzed. These included different energy mixes and the use of inductive cookers as an alternative to those that use liquefied petroleum gas (LPG), which are the most used in Ecuador. The influence of the energy production structure of the country on the environmental impact of the household is supported by the results. A higher share of hydroelectricity in the energy mix, compared with the share of thermal electricity, presented lower environmental impacts in most categories. Public policies that encourage a shift towards a cleaner electricity production technology may decrease the overall environmental impact of households and buildings. The occupation stage entails the highest contribution to all impact categories, e.g. 88% of global warming potential (GWP), followed by the pre-occupation stage, contributing 10% of GWP. Food consumption has not been considered in reviewed studies, although it represents the highest environmental burden within the occupation stage of the house, followed by electricity, and gas use: 43, 27, and 20% of GWP respectively. The results support the importance of including household metabolism in LCA studies due to the high environmental burden associated with it, and the influence of the electricity production structure of the country on the life cycle impact of households.

Año de publicación:

2020

Keywords:

  • FOOD
  • carbon footprint
  • Global warming
  • LCA
  • energy mix
  • houses

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia ambiental

Áreas temáticas:

  • Arquitectura
  • Economía de la tierra y la energía
  • Gestión doméstica y familiar