LSDE: Levenshtein Space Deep Embedding for Query-by-String Word Spotting
Abstract:
In this paper we present the LSDE string representation and its application to handwritten word spotting. LSDE is a novel embedding approach for representing strings that learns a space in which distances between projected points are correlated with the Levenshtein edit distance between the original strings. We show how such a representation produces a more semantically interpretable retrieval from the user's perspective than other state of the art ones such as PHOC and DCToW. We also conduct a preliminary handwritten word spotting experiment on the George Washington dataset.
Año de publicación:
2017
Keywords:
- Handwritten Keyword Spotting
- CNNs
- Query by string
- Deep embeddings
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos
- Lengua