LSDE: Levenshtein Space Deep Embedding for Query-by-String Word Spotting


Abstract:

In this paper we present the LSDE string representation and its application to handwritten word spotting. LSDE is a novel embedding approach for representing strings that learns a space in which distances between projected points are correlated with the Levenshtein edit distance between the original strings. We show how such a representation produces a more semantically interpretable retrieval from the user's perspective than other state of the art ones such as PHOC and DCToW. We also conduct a preliminary handwritten word spotting experiment on the George Washington dataset.

Año de publicación:

2017

Keywords:

  • Handwritten Keyword Spotting
  • CNNs
  • Query by string
  • Deep embeddings

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos
  • Lengua