Laplacian derivative based regularization for optical flow estimation in driving scenario


Abstract:

Existing state of the art optical flow approaches, which are evaluated on standard datasets such as Middlebury, not necessarily have a similar performance when evaluated on driving scenarios. This drop on performance is due to several challenges arising on real scenarios during driving. Towards this direction, in this paper, we propose a modification to the regularization term in a variational optical flow formulation, that notably improves the results, specially in driving scenarios. The proposed modification consists on using the Laplacian derivatives of flow components in the regularization term instead of gradients of flow components. We show the improvements in results on a standard real image sequences dataset (KITTI). © 2013 Springer-Verlag.

Año de publicación:

2013

Keywords:

  • Driver Assistance Systems
  • Performance evaluation
  • regularization
  • optical flow

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Simulación por computadora

Áreas temáticas:

  • Métodos informáticos especiales