Large-scale network connectivity of Synechococcus elongatus PCC7942 metabolism
Abstract:
From the topological perspective, the availability of genome-scale metabolic network models assists to the large-scale analysis of the metabolites connections, and thus, the evaluation of the cell metabolic capabilities to produce high added-value molecules. In this study, a comprehensive connectivity analysis of the published genome-scale metabolic model of Synechococcus elongatus PCC7942 (iSyf715) is presented, highlighting the most connected metabolites of this biological system. To get a suitable fit, the connectivity distribution of the metabolic model is evaluated using the cumulative distribution function (Pareto's law), verifying a power-law distribution in iSyf715 metabolic network (γ=2.203). Additionally, through the comparison of the connectivity distributions in different microbial metabolic network models, the scale-free behavior of these metabolic networks is verified. The prediction of the metabolic network connectivity could supports the determination of the underlying functioning principles of certain cellular processes.
Año de publicación:
2016
Keywords:
- hub metabolites
- metabolic network topology
- Synechococcus elongatus PCC7942
- Connectivity analysis
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Metabolismo
Áreas temáticas de Dewey:
- Microorganismos, hongos y algas

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 13: Acción por el clima
- ODS 2: Hambre cero
