Large-scale stochastic mixed-integer programming algorithms for power generation scheduling
Abstract:
This chapter presents a stochastic unit commitment model for power systems and revisits parallel decomposition algorithms for these types of models. The model is a two-stage stochastic programming problem with first-stage binary variables and second-stage mixed-binary variables. The here-and-now decision is to find day-ahead schedules for slow thermal power generators. The wait-and-see decision consists of dispatching power and scheduling fast-start generators. We discuss advantages and limitations of different decomposition methods and provide an overview of available software packages. A large-scale numerical example is presented using a modified IEEE 118-bus system with uncertain wind power generation.
Año de publicación:
2016
Keywords:
Fuente:
scopus
Tipo de documento:
Book Part
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Política energética
Áreas temáticas:
- Sistemas
- Economía
- Física aplicada