A DNN approach to improving the short-term investment criteria for S&P500 index stock market


Abstract:

The investment decision criteria for the S&P500 Index stock market have been a challenge because the data is massive, complex, non-linear and noised. This study proposes the following approach: first, the Index data constitutes the input for training a Deep Learning Neural Network (DNN) for representing it adequately; and second, using the trained model and a sliding window technique, forecast short-term step by step stock values. The process takes into account a heuristic to control the possible extrapolation anomalies of the DNN. Finally, the generated information allows a supported decision. The representation of quantitative correlation values of S&P 500 Index data and their forecasting are promising. Qualitative options of the pbkp_rediction, constitutes decision making information. The present research permits academics to revise a new experience in data analysis; and, for practitioners, contributes to support investment decisions in the stock market.

Año de publicación:

2019

Keywords:

  • S&P500 index
  • stock market
  • Deep learning neural network
  • forecasting

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Finanzas
  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Economía financiera
  • Métodos informáticos especiales