Learning an Improved LMI Controller Based on Takagi-Sugeno Models via Value Iteration


Abstract:

This article proposes an alternative for formulating the method to improve the conservative controllers based on linear matrix inequality (LMI), action-value function (Q-function), and value iteration algorithm to learn optimal controllers by using system data. In this respect, the proposed uses ideas of the previous works that parametrize in a particular way the Q-function. In this sense, the Q-function can be described with polynomials membership functions for fuzzy models of Takagi-Sugeno and initialize a learning process with the LMI controller. The obtained controller uses both the information about the membership functions and a set of data obtained from the system to improve the LMI controller. A TORA system is used to illustrate the approach.

Año de publicación:

2022

Keywords:

  • Takagi-Sugeno fuzzy models
  • approximate dynamic programming
  • Q function
  • reinforcement learning
  • linear matrix inequalities

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema de control
  • Teoría de control

Áreas temáticas:

  • Ciencias de la computación
  • Lingüística aplicada
  • Física aplicada