Learning optimal spatially-dependent regularization parameters in total variation image denoising


Abstract:

We consider a bilevel optimization approach in function space for the choice of spatially dependent regularization parameters in TV image denoising models. First- and second-order optimality conditions for the bilevel problem are studied when the spatially-dependent parameter belongs to the Sobolev space H1(Ω). A combined Schwarz domain decomposition-semismooth Newton method is proposed for the solution of the full optimality system and local superlinear convergence of the semismooth Newton method is verified. Exhaustive numerical computations are finally carried out to show the suitability of the approach.

Año de publicación:

2017

Keywords:

  • Schwarz domain decomposition method
  • optimization-based learning in imaging
  • PDE-constrained optimization
  • Semismooth Newton method
  • Bilevel optimization

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Métodos informáticos especiales
  • Procesos mentales conscientes e inteligencia
  • Física aplicada