Learning optimal spatially-dependent regularization parameters in total variation image denoising
Abstract:
We consider a bilevel optimization approach in function space for the choice of spatially dependent regularization parameters in TV image denoising models. First- and second-order optimality conditions for the bilevel problem are studied when the spatially-dependent parameter belongs to the Sobolev space H1(Ω). A combined Schwarz domain decomposition-semismooth Newton method is proposed for the solution of the full optimality system and local superlinear convergence of the semismooth Newton method is verified. Exhaustive numerical computations are finally carried out to show the suitability of the approach.
Año de publicación:
2017
Keywords:
- Schwarz domain decomposition method
- optimization-based learning in imaging
- PDE-constrained optimization
- Semismooth Newton method
- Bilevel optimization
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Métodos informáticos especiales
- Procesos mentales conscientes e inteligencia
- Física aplicada