Learning to colorize infrared images


Abstract:

This paper focuses on near infrared (NIR) image colorization by using a Generative Adversarial Network (GAN) architecture model. The proposed architecture consists of two stages. Firstly, it learns to colorize the given input, resulting in a RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. The proposed model starts the learning process from scratch, because our set of images is very different from the dataset used in existing pre-trained models, so transfer learning strategies cannot be used. Infrared image colorization is an important problem when human perception need to be considered, e.g., in remote sensing applications. Experimental results with a large set of real images are provided showing the validity of the proposed approach.

Año de publicación:

2017

Keywords:

  • Image colorization
  • CNN in multispectral imaging

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Ciencias de la computación
  • Simulación por computadora

Áreas temáticas:

  • Filosofía de las bellas artes y artes decorativas
  • Métodos informáticos especiales
  • Campos específicos y tipos de fotografía