Life cycle inventory of medium density fibreboard
Abstract:
Goal, Scope and Background. Wood is the most important renewable material. The management of wood appears to be a key action to optimise the use of resources and to reduce the environmental impact associated with mankind's activities. Wood-based products must be analysed considering the two-fold nature of wood, commonly used as a renewable material or regenerative fuel. Relevant, up-to-date environmental data are needed to allow the analysis of wood-based products. The main focus of this study is to provide comprehensive data of one key wood board industry such as the Medium Density Fibreboard (MDF). Moreover, the influence of factors with strong geographical dependence, such as the electricity profile and final transport of the product, is analysed. In this work, International Organization for Standardization standards (ISO 14040-43) and Ecoindicator 99 methodology have been considered to quantify the potential environmental impact associated to the system under study. Three factories, considered representative of the 'state of art', were selected to study the process in detail: two Spanish factories and a Chilean one, with a process production of around 150,000 m<sup>3</sup> per year. The system boundaries included all the activities taking place into the factory as well as the activities linked to the production of the main chemicals used in the process, energy inputs and transport. All the data related to the inputs and outputs of the process were obtained by on-site measurements during a one-year period. A sensitive analysis was carried out taking into account the influence of the final transport of the product and the dependence on the electricity generation profile. Life Cycle Inventory Analysis. LCI methodology has been used for the quantification of the impacts of the MDF manufacture. The process chain can be subdivided in three main subsystems: wood preparation, board shaping and board finishing. The final transport of the product was studied as a different subsystem, considering scenarios from local to transoceanic distribution and three scenarios of electricity generation profile were assessed. The system was characterised with Ecoindicator 99 methodology (hierarchic version) in order to identify the 'hot spots'. Damage to Human Health, Ecosystem Quality and Resources are mainly produced by the subsystem of Wood Preparation (91.1%, 94.8% and 94.1%, respectively). The contribution of the subsystem of Board Finishing is considerably lower, but also significant, standing for the 5.8% of the damage to HH and 5.5% of the damage to Resources. Conclusions. With the final aim of creating a database of wood board manufacture, this work was focused in the identification and characterisation of one of the most important wood-based products: Medium Density Fibreboard. Special attention has been paid in the inventory analysis stage of the MDF industry. The results of the sensitive analysis showed a significant influence of both the final transport of the product and the electricity generation profile. Thus, the location of MDF process is of paramount importance, as both aspects have considerable site-dependence. Recommendations and Perspectives. Research continues to be conducted to identify the environmental burdens associated to the materials of extended use. In this sense, future work can be focused on the comparison of different materials for specific applications. © 2007 ecomed publishers (Verlagsgruppe Hüthig Jehle Rehm GmbH).
Año de publicación:
2007
Keywords:
- Medium density fibreboard (MDF)
- Wood-based panels
- Chipboard manufacture
- Life cycle assessment (LCA)
- Life cycle inventory (LCI)
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencia de materiales
- Ingeniería ambiental
Áreas temáticas:
- Industria papelera