Limit distributions in random resistor networks
Abstract:
The question of attraction to stable limit distributions in random resistor networks (RRNs) is explored numerically. Transport in networks with power law distributions of conductances of the form P(g) = |μ|gμ-1 are considered. Distributions of equivalent conductances are estimated on hierarchical lattices as a function of size L and the parameter μ. We find that only lattices at the percolation threshold can support transport in a Levy-like basin. For networks above the percolation threshold, convergence to a Gaussian basin is always the case, and a disorder length ξD is identified, beyond which the system is effectively homogeneous. This length scale diverges, when the microscopic distribution of conductors is exponentially wide (μ→0), as ξD∼|μ|-1.6-0.1. © 1992.
Año de publicación:
1992
Keywords:
Fuente:


Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Física estadística
- Optimización matemática
- Proceso estocástico
Áreas temáticas:
- Física aplicada
- Electricidad y electrónica