Linear regression QSAR models for polo-like kinase-1 inhibitors


Abstract:

A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.

Año de publicación:

2018

Keywords:

  • Half-maximal inhibitory concentration
  • Polo-like kinase-1 inhibitors
  • Replacement method
  • Quantitative structure-activity relationships
  • Molecular descriptors

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Relación cuantitativa estructura-actividad
  • Bioquímica
  • Ciencias de la computación

Áreas temáticas:

  • Química analítica

Contribuidores: