Local Antimagic Vertex Coloring of a Graph
Abstract:
Let G= (V, E) be a connected graph with | V| = n and | E| = m. A bijection f: E→ { 1 , 2 , ⋯ , m} is called a local antimagic labeling if for any two adjacent vertices u and v, w(u) ≠ w(v) , where w(u) = ∑ e∈E(u)f(e) , and E(u) is the set of edges incident to u. Thus any local antimagic labeling induces a proper vertex coloring of G where the vertex v is assigned the color w(v). The local antimagic chromatic number χla(G) is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper we present several basic results on this new parameter.
Año de publicación:
2017
Keywords:
- Antimagic labeling
- Local antimagic chromatic number
- Local antimagic labeling
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
- Algoritmo
Áreas temáticas:
- Ciencias de la computación