Local antimagic chromatic number for copies of graphs
Abstract:
An edge labeling of a graph G = (V, E) using every label from the set {1, 2, …, |E(G)|} exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.
Año de publicación:
2021
Keywords:
- Local antimagic labeling
- Local antimagic chromatic number
- copies of graphs
Fuente:

Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática