Local convergence analysis for partitioned quasi-Newton updates


Abstract:

This paper considers local convergence properties of inexact partitioned quasi-Newton algorithms for the solution of certain non-linear equations and, in particular, the optimization of partially separable objective functions. Using the bounded deterioration principle, one obtains local and linear convergence, which implies Q-superlinear convergence under the usual conditions on the quasi-Newton updates. For the optimization case, these conditions are shown to be satisfied by any sequence of updates within the convex Broyden class, even if some Hessians are singular at the minimizer. Finally, local and Q-superlinear convergence is established for an inexact partitioned variable metric method under mild assumptions on the initial Hessian approximations. © 1982 Springer-Verlag.

Año de publicación:

1982

Keywords:

  • Subject Classifications: AMS(MOS): 65K05, CR: 5.15

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis numérico
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Programación informática, programas, datos, seguridad