Local convergence analysis of inexact Gauss–Newton method for singular systems of equations under majorant and center-majorant condition
Abstract:
We present a new semi-local convergence analysis of the Gauss–Newton method for solving convex composite optimization problems using the concept of quasi-regularity for an initial point. The convergence analysis is based on a combination of a center-majorant and a majorant function. The results extend the applicability of the Gauss–Newton method under the same computational cost as in earlier studies. In particular, the advantages are: the error estimates on the distances involved are more precise and the convergence ball is at least as large. Numerical examples are also provided in this study.
Año de publicación:
2015
Keywords:
- Convergence ball
- Center-majorant function
- local convergence
- Gauss–Newton method
- Majorant function
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Análisis numérico
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación