Local convergence for three-step eighth- order method under weak conditions
Abstract:
We present a local convergence analysis for an eighth-order convergent method in order to find a solution of nonlinear equation in a Banach space setting. In contrast to the earlier studies using hypotheses up to the seventh Fréchet-derivative, we only use hypotheses on the first-order Fréchet-derivative and Lipschitz constants. This way, we not only expand the applicability of these methods but also proposed the computable radius of convergence of these methods. Finally, a variety of concrete numerical examples demonstrate that our results even apply to solve those nonlinear equations where earlier studies cannot apply.
Año de publicación:
2019
Keywords:
- Order of convergence
- local convergence
- Iterative method
- Lipschitz constant
- Banach space
Fuente:

Tipo de documento:
Book Part
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Álgebra