Local convergence of Cauchy-type methods under hypotheses on the first derivative
Abstract:
We present a local convergence analysis of Cauchy-type methods free of the second derivative using hypotheses only on the first derivative. In earlier studies such as Amat et al. (2003, 2008), Hernández and Salanova (1999), Jarratt (1996), Kou (2007), Parhi and Gupta (2007), Rall (1979) and Ren et al. (2009) hypotheses up to the fourth derivative have been used to show convergence although the method requires evaluations of the function and its derivative. This way we extend the applicability of these methods. Numerical examples are provided in this study where earlier results cannot apply but the new results can apply to solve equations.
Año de publicación:
2017
Keywords:
- Newton's method
- Cauchy's method
- local convergence
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Análisis numérico
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis
- Álgebra
- Análisis numérico