Local limit theorems for shock models


Abstract:

In many physical systems, failure occurs when the stress after shock n first exceed a critical level x.We consider the number of shocks τ(x) to failure and obtain more detailed information that is usually obtained about asymptotic distribution by using local limit theorems. We consider extreme and cumulative shock models with both univariate and multivariate shock types. We derive the limiting distribution of τ(x) and the rate of convergence to that. For the extreme shock model, rate of convergence for regularly varying shock distributions is found using the weighted Kolmorogov probability metric. For the cumulative shock model, we examine the rate of convergence to Gaussian densities.

Año de publicación:

2016

Keywords:

  • Renewal theory
  • Local limit theory
  • Regular variation
  • Shock models
  • Extreme value theory

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Probabilidad
  • Optimización matemática

Áreas temáticas:

  • Matemáticas