Local rainfall modelling based on global climate information: a data-based approach


Abstract:

Modelling climate is complex due to multi-scale interactions and strong nonlinearities. However, climate signals are typically quasi-periodical and are likely to depend on exogenous-variables. Motivated by this insight, we propose a strategy to circumvent modelling complexity based on the following ideas. 1) The observed signals can be decomposed into non-stationary trends and quasi-periodicities through Dynamic-Harmonic-Regressions (DHR). 2) The main-frequencies and decomposed signals can be used for constructing a harmonic model with varying parameters depending on exogenous-variables. 3) The State-Dependent-Parameter (SDP) technique allows for the dynamical estimation of these parameters. The resulting DHR-SDP combined approach is applied to rainfall-monthly modelling, using global-climate signals as exogenous-variables. As a result, 1) the model yields better predictions than …

Año de publicación:

2020

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Cambio climático
    • Análisis de datos
    • Ciencia ambiental

    Áreas temáticas de Dewey:

    • Geología, hidrología, meteorología
    • Economía de la tierra y la energía
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 13: Acción por el clima
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 9: Industria, innovación e infraestructura
    Procesado con IAProcesado con IA