Local search move strategies within MOEA/D


Abstract:

Local search (LS) is at the cornerstone of many advanced heuristics for single-objective combinatorial optimization. In particular, the move strategy, allowing to iteratively explore neighboring solutions, is a key ingredient in the design of an efficient local search. Although LS has been the subject of some interesting investigations dedicated to multi-objective optimization, new research opportunities arise with respect to novel multi-objective search paradigms. In particular, the successful MOEA/D algorithm is a decomposition-based framework which has been intensively applied to continuous problems. However, only scarce studies exist in the combinatorial case. In this paper, we are interested in the design of cooperative scalarizing local search approaches for decomposition-based multi-objective combinatorial optimization. For this purpose, we elaborate multiple move strategies taking part in the MOEA/D replacement flow. We there-by provide some preliminary results eliciting the impact of these strategy of the final population and more importantly on the anytime performance.

Año de publicación:

2016

Keywords:

  • multi-objective optimization
  • local search
  • decomposition

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Algoritmo

Áreas temáticas de Dewey:

  • Programación informática, programas, datos, seguridad
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA