A Dirichlet Boundary Value Problem for Fractional Monogenic Functions in the Riemann–Liouville Sense
Abstract:
This paper solves the Dirichlet boundary value problem of distinguishing domains for Clifford fractional–monogenic functions in Rn for fixed n, in the Riemann–Liouville sense. To do so, we use a matrix representation of the Clifford algebras. This allows us to construct computational algorithms that efficiently perform the calculations necessary to guarantee the existence of a solution for the Dirichlet boundary value problem over a properly distinguished domain. Finally, we show some explicit solutions for the Dirichlet boundary problem in R3.
Año de publicación:
2020
Keywords:
- Matrix representation of Clifford algebras
- Fractional Cauchy–Riemann operator
- Fractional monogenic functions
- Dirichlet boundary value problem
Fuente:
google
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Matemáticas aplicadas
- Optimización matemática
Áreas temáticas:
- Análisis