MOF@biomass hybrids: Trends on advanced functional materials for adsorption
Abstract:
This contribution aims to demonstrate the scope of new hybrids between biomass and metal-organic frameworks (MOF@biomass) used in the adsorption process of pollutants. After a brief presentation of the use of the main series of MOFs as efficient adsorbents for different types of pollutants, the limitations of these structures related to particle size and hydrodynamic problems during their application are highlighted. Lignocellulosic biomasses are also recognized as an alternative adsorbent, mainly due to their high natural abundance and their low environmental impact during and after their application. The limited capacity of bioadsorbents becomes important in this research. Consequently, the largest amount of information existing in the last ten years on MOF-Biomass functionalization as a hybrid and improvement technology for adsorption processes is compiled, analyzed, compared and contrasted. So far, there is no evidence of works that exploit the concept of functionalization of adsorbents of different nature to give rise to new hybrid materials. Through this review it was found that the hybrids obtained show a higher adsorption capacity (Qe) compared to their precursors, due to the increase of organic functional groups provided by the biomass. Thus, for heavy metals, dyes, Arsenium anions and other organic and pharmaceutical compounds, there are increases in Qe of about 100 mg g−1. The possibility of the new hybrid being studied for desorption and reuse processes is also raised, resulting in a new line of research that is attractive for the industry from an economic and environmental point of view. The functionalization methods and techniques used in the studies cited in this article are outlined. In conclusion, this research brings a new horizon of study in the field of adsorption and mentions the main future challenges related to new sustainable applications.
Año de publicación:
2023
Keywords:
- Synthesis methods
- MOF hybrids
- Adsorption
- COMPOSITES
- Environmental remediation
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencia de materiales
Áreas temáticas:
- Física aplicada
- Tecnología de otros productos orgánicos
- Ingeniería química