MR molecular imaging of prostate cancer with a peptide-targeted contrast agent in a mouse orthotopic prostate cancer model
Abstract:
Purpose: To study the effectiveness of a peptide targeted nanoglobular Gd-DOTA complexes for MR molecular imaging of prostate cancer in a mouse orthotopic PC-3 prostate cancer model. Methods A CLT1 (CGLIIQKNEC) peptide-targeted generation 2 nanoglobular Gd-DOTA monoamide conjugate [CLT1-G2-(Gd-DOTA)] was used for imaging fibrin-fibronectin complexes in prostate tumor using a non-specific peptide KAREC modified conjugate, KAREC-G2-(Gd-DOTA) as a control. Cy5 conjugates of CLT1 and KAREC were synthesized for binding studies. Orthotopic PC-3 prostate tumors were established in the prostate of athymic male nude mice. MRI study was performed on a Bruker 7T small animal MRI system. Results: CLT1 peptide showed specific binding in the prostate tumor with no binding in normal tissues. The control peptide had little binding in normal and tumor tissues. CLT1-G2-(Gd-DOTA) resulted in stronger contrast enhancement in tumor tissue than KAREC-G2-(Gd-DOTA). CLT1-G2-(Gd-DOTA) generated ∼100% increase in contrast-to-noise ratio (CNR) in the tumor compared to precontrast CNR at 1 min post-injection, while KAREC-G2-(Gd-DOTA) resulted in 8% increase. Conclusion: CLT1-G2-(Gd-DOTA) is a promising molecular MRI contrast agent for fibrin-fibronectin complexes in tumor stroma. It has potential for diagnosis and assessing prognosis of malignant tumors with MRI. © Springer Science+Business Media, LLC 2011.
Año de publicación:
2012
Keywords:
- Tumor stroma
- targeted contrast agent
- Prostate cancer
- MRI
- molecular imaging
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Laboratorio médico
- Biología molecular
Áreas temáticas:
- Enfermedades