Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds


Abstract:

Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to pbkp_redict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research.

Año de publicación:

2022

Keywords:

  • Information Fusion
  • complex networks
  • Machine learning
  • CHEMBL
  • perturbation theory
  • multidrug-resistant
  • antibacterial compounds

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Bioquímica
  • Descubrimiento de fármacos

Áreas temáticas:

  • Métodos informáticos especiales
  • Biología
  • Farmacología y terapéutica