Machine Learning to Improve Multi-Hop Searching and Extended Wireless Reachability in V2X
Abstract:
Multi-hop relay selection is a critical issue in vehicle-to-everything networks. In previous works, the optimal hopping strategy is assumed to be based on the shortest distance. This study proposes a hopping strategy based on the lowest propagation loss, considering the effect of the environment. We use a two-step machine learning routine: improved deep encoder-decoder architecture to generate environmental maps and Q-learning to search for the multi-hopping path with the lowest propagation loss. Simulation results show that our proposed method can improve environmental recognition and extend the reachability of multi-hop communications by up to 66.7%, compared with a shortest-distance selection.
Año de publicación:
2020
Keywords:
- vehicle-to-everything
 - Q-Learning
 - multi-hop wireless communication
 - Machine learning
 
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
 - Ciencias de la computación
 
Áreas temáticas de Dewey:
- Métodos informáticos especiales
 
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
 - ODS 11: Ciudades y comunidades sostenibles
 - ODS 13: Acción por el clima