Machine Learning to Improve Multi-Hop Searching and Extended Wireless Reachability in V2X


Abstract:

Multi-hop relay selection is a critical issue in vehicle-to-everything networks. In previous works, the optimal hopping strategy is assumed to be based on the shortest distance. This study proposes a hopping strategy based on the lowest propagation loss, considering the effect of the environment. We use a two-step machine learning routine: improved deep encoder-decoder architecture to generate environmental maps and Q-learning to search for the multi-hopping path with the lowest propagation loss. Simulation results show that our proposed method can improve environmental recognition and extend the reachability of multi-hop communications by up to 66.7%, compared with a shortest-distance selection.

Año de publicación:

2020

Keywords:

  • vehicle-to-everything
  • Q-Learning
  • multi-hop wireless communication
  • Machine learning

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales