Machine learning for computer-aided polyp detection using wavelets and content-based image


Abstract:

The continuous growing of machine learning techniques, their capabilities improvements and the availability of data being continuously collected, recorded and updated, can enhance diagnosis stages by making it faster and more accurate than human diagnosis. In lower endoscopies procedures, most of the diagnosis relies on the capabilities and expertise of the physician. During medical training, physicians can be benefited from the assistance of algorithms able to automatically detect polyps, thus enhancing their diagnosis. In this paper, we propose a machine learning approach trained to detect polyps in lower endoscopies recordings with high accuracy and sensitivity, previously processed using wavelet transform for feature extraction. The propose system is validated using available datasets. From a set of 1132 images, our system showed a 97.9% of accuracy in diagnosing polyps, around 10% more efficient than other approaches using techniques with a low computational requirement previously published. In addition, the false positive rate was 0.03. This encouraging result can be also extended to other diagnosis.

Año de publicación:

2019

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Visión por computadora
    • Ciencias de la computación

    Áreas temáticas:

    • Ciencias de la computación