Madden–Julian oscillation influence on sub-seasonal rainfall variability on the west of South America
Abstract:
The Madden–Julian Oscillation (MJO) is the leading driver of intraseasonal rainfall variability in the global tropics. However, the influence of MJO on western tropical South America (WTSA) has not been a focus of research. This is not surprising since the MJO convective core becomes nondescript as it propagates across the eastern Pacific, such that its influence on the Pacific coast of tropical South America is not obvious in global analyses. In this study, we examine MJO impacts on subseasonal rainfall variability in the rainiest season for WTSA (February–April). In order to avoid confusion with El Niño Southern Oscillation (ENSO) signals, only ENSO-neutral years are included in the analysis. We found that the MJO convective core reemerges when it propagates onto land in WTSA, and that it is associated with subseasonal precipitation anomalies of 20–50% relative to climatology. The MJO signal is evident in the real-time multivariate MJO (RMM) index; however, the signal is clearer when a custom subseasonal index for the region based on WTSA outgoing longwave radiation is employed. Dynamically, the MJO influence is consistent with a modulation of the Pacific Ocean Walker Circulation descending branch, which is climatologically located in or near WTSA. Furthermore, MJO drives zonal and vertical motions on moisture and wind fields that influence precipitation in the region. We found that the timing of deep convection on subseasonal timescales captured by the regional index is consistent with a dominant role of the MJO convective core, rather than propagation of equatorial Rossby or Kelvin waves. However, there is evidence that equatorial Rossby waves that emerge over the tropical Atlantic Ocean also influence precipitation in WTSA on MJO timescales.
Año de publicación:
2020
Keywords:
- Madden–Julian oscillation
- Western amazon
- SOUTH AMERICA
- precipitation
- Intraseasonal variability
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Meteorología
- Clima
Áreas temáticas:
- Geología, hidrología, meteorología