Majorisations for the eigenvectors of graph-adjacency matrices


Abstract:

We develop majorisation results that characterise changes in eigenvector components of a graph's adjacency matrix when its topology is changed. Specifically, for general (weighted, directed) graphs, we characterise changes in dominant eigenvector components for single- and multi-row incrementations. We also show that topology changes can be tailored to set ratios between the components of the dominant eigenvector. For more limited graph classes (specifically, undirected, and reversibly-structured ones), majorisations for components of the subdominant and other eigenvectors upon graph modifications are also obtained.

Año de publicación:

2014

Keywords:

  • algebraic graph theory

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Teoría de grafos
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación