Majorisations for the eigenvectors of graph-adjacency matrices
Abstract:
We develop majorisation results that characterise changes in eigenvector components of a graph's adjacency matrix when its topology is changed. Specifically, for general (weighted, directed) graphs, we characterise changes in dominant eigenvector components for single- and multi-row incrementations. We also show that topology changes can be tailored to set ratios between the components of the dominant eigenvector. For more limited graph classes (specifically, undirected, and reversibly-structured ones), majorisations for components of the subdominant and other eigenvectors upon graph modifications are also obtained.
Año de publicación:
2014
Keywords:
- algebraic graph theory
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación