Mapping prairie pothole communities with multitemporal Ikonos satellite imagery


Abstract:

We evaluated the ability of Ikonos imagery from August and October 2000 to classify prairie pothole community types of the Missouri Coteau of North Dakota. Classification tree analyses were conducted to create land-cover maps at three levels of detail. The analyses successfully distinguished broad cover types (potholes including emergent vegetation versus upland vegetation) at 92 percent overall accuracy. Overall accuracy dropped to 80 percent when upland vegetation was segregated into woody and grassy communities and to 71 percent when we attempted to classify at the species or near-species levels. The use of two image dates was of importance in the classifications; the failure to acquire early season imagery, therefore, might have impaired our results. © 2006 American Society for Photogrammetry and Remote Sensing.

Año de publicación:

2006

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ecología
    • Sensores remotos
    • Sensores remotos

    Áreas temáticas de Dewey:

    • Ciencias de la computación
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 15: Vida de ecosistemas terrestres
    • ODS 13: Acción por el clima
    • ODS 17: Alianzas para lograr los objetivos
    Procesado con IAProcesado con IA