Mathematica aided teaching of nonlinear control theory


Abstract:

During the last three years the authors of this paper have been using Mathematica to develop symbolic computing tools that, at their present stage of development, allow to: (1) Calculate and topologically classify the equilibrium points of nonlinear second order dynamical systems depending on two or three parameters [2], (2) Detect and classify Poincaré-Andronov-Hopf (PAH) bifurcations [5], (3) Track the dependence of flows on system's parameters through sequences of phase portraits for prescribed sequences of values of the parameters, (4) Estimate basins of attraction with Lyapunov functions [1], and (5) design linear and nonlinear controllers and observers for nth order nonlinear control systems (NLCS) [3, 4, 6, 7]. Even though these tools were not originally developed as teaching aids, their use for such purposes might relieve students from a big amount of symbolic and graphical calculation by hand, allowing them to pay more attention to conceptual problems and to study more realistic models of physical phenomena.

Año de publicación:

1996

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Sistema no lineal
    • Tecnología educativa

    Áreas temáticas:

    • Matemáticas