Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films


Abstract:

We investigate the Dzyaloshinskii-Moriya interactions (DMIs) in perpendicularly magnetized thin films of Pt/Co/Pt and Pt/Co/Ir/Pt. To study the effective DMI, arising at either side of the ferromagnet, we use a field-driven domain wall creep-based method. The use of only magnetic field removes the possibility of mixing with current-related effects such as spin Hall effect or Rashba field, as well as the complexity arising from lithographic patterning. Inserting an ultrathin layer of Ir at the top Co/Pt interface allows us to access the DMI contribution from the top Co/Pt interface. We show that the insertion of a thin Ir layer leads to reversal of the sign of the effective DMI acting on the sandwiched Co layer, and therefore continuously changes the domain wall structure from the right- to the left-handed Néel wall. The use of two DMI-active layers offers an efficient way of DMI tuning and enhancement in thin magnetic films. The comparison with an epitaxial Pt/Co/Pt multilayer sheds more light on the origin of DMI in polycrystalline Pt/Co/Pt films and demonstrates an exquisite sensitivity to the exact details of the atomic structure at the film interfaces. © 2014 American Physical Society.

Año de publicación:

2014

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Magnetismo
    • Campo magnético
    • Ciencia de materiales

    Áreas temáticas:

    • Electricidad y electrónica