A Low Computational Cost, Prioritized, Multi-Objective Optimization Procedure for Predictive Control towards Cyber Physical Systems


Abstract:

Cyber physical systems consist of heterogeneous elements with multiple dynamic features. Consequently, multiple objectives in the optimality of the overall system may be relevant at various times or during certain context conditions. Low cost, efficient implementations of such multi-objective optimization procedures are necessary when dealing with complex systems with interactions. This work proposes a sequential implementation of a multi-objective optimization procedure suitable for industrial settings and cyber physical systems with strong interaction dynamics. The methodology is used in the context of an Extended Prediction self-adaptive Control (EPSAC) strategy with prioritized objectives. The analysis indicates that the proposed algorithm is significantly lighter in terms of computational time. The combination with an input-output formulation for predictive control makes these algorithms suitable for implementation with standardized process control units. Three simulation examples from different application fields indicate the relevance and feasibility of the proposed algorithm.

Año de publicación:

2020

Keywords:

  • Priority objectives
  • INTERACTION
  • safety
  • steam power plant
  • Model Pbkp_redictive Control
  • multi-objective optimization
  • drug regulatory network
  • Unmanned aerial vehicle

Fuente:

googlegoogle
scopusscopus
orcidorcid

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas de Dewey:

  • Ciencias de la computación
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 12: Producción y consumo responsables
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA