Minimal doubly resolving sets of necklace graph
Abstract:
Consider a simple connected undirected graph G = (V;E), where V represents the vertex set and E represents the edge set, respectively. A subset D of V is called doubly resolving set if for every two vertices x; y of G, there are two vertices u; v ∈ D such that d(u; x) - d(u; y) ≠= d(v; x) - d(v; y). A doubly resolving set with minimum cardinality is called minimal doubly resolving set. This minimum cardinality is denoted by (G). In this paper, we find the minimal doubly resolving set for necklace graph Nen, n ≥ 2. Also, we prove that (Nen) = 3 for n ≥ 2.
Año de publicación:
2018
Keywords:
- Minimal doubly resolving set
- Metric dimension
- Necklace graph
- Resolving set
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación