Mitigating the effect of dataset shift in clustering


Abstract:

Dataset shift is a relevant topic in unsupervised learning since many applications face evolving environments, causing an important loss of generalization and performance. Most techniques that deal with this issue are designed for data stream clustering, whose goal is to process sequences of data efficiently under Big Data. In this study, we claim dataset shift is an issue for static clustering tasks in which data is collected over a long period. To mitigate it, we propose Time-weighted kernel k-means, a k-means variant that includes a time-dependent weighting process. We do this via the induced ordered weighted average (IOWA) operator. The weighting process acts as a gradual forgetting mechanism, prioritizing recent examples over outdated ones in the clustering algorithm. The computational experiments show the potential Time-weighted kernel k-means has in evolving environments.

Año de publicación:

2023

Keywords:

  • OWA Operators
  • Induced ordered weighted average
  • Clustering
  • Kernel k-means
  • Dataset shift

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas de Dewey:

  • Programación informática, programas, datos, seguridad
  • Derecho
  • Física aplicada
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA