Model Learning and Spatial Data Fusion for Predicting Sales in Local Agricultural Markets


Abstract:

This research explores the ability to extract knowledge about the associations among agricultural products which allows to improve the prediction of future consumption in the local markets of the Andean region of Ecuador. This commercial activity is carried out using Alternative Marketing Circuits (CIALCO), seeking to establish a direct relationship between producer and consumer prices, and promote buying and selling among family groups. The fusion of information from spatially located heterogeneous data sources allows to establish the best association rules between data sources (several products in several local markets) to infer a significant improvement in spatial prediction accuracy for sales future agricultural products.

Año de publicación:

2018

Keywords:

  • pbkp_redictive analysis
  • COKRIGING
  • KRIGING
  • alternative circuits of commercialization
  • Association Rules
  • spatial pbkp_rediction
  • TIME SERIES
  • Data Mining

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Agricultura

Áreas temáticas de Dewey:

  • Ciencias de la computación
  • Métodos informáticos especiales
  • Economía de la tierra y la energía
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 2: Hambre cero
  • ODS 12: Producción y consumo responsables
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA