Model error modelling using a stochastic embedding approach with gaussian mixture models for FIR systems


Abstract:

In this paper a Maximum Likelihood estimation algorithm for error-model modelling using a stochastic embedding approach is developed. The error-model distribution is approximated by a finite Gaussian mixture. An Expectation-Maximization based algorithm is proposed to estimate the nominal model and the distribution of the parameters of the error-model by using the data from independent experiments. The benefits of our proposal are illustrated via numerical simulations.

Año de publicación:

2020

Keywords:

  • Stochastic embedding
  • Expectation-maximization
  • Estimation
  • Model errors
  • Maximum likelihood
  • Gaussian Mixture

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Modelo estadístico

Áreas temáticas de Dewey:

  • Métodos informáticos especiales
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 4: Educación de calidad
Procesado con IAProcesado con IA