Model error modelling using a stochastic embedding approach with gaussian mixture models for FIR systems
Abstract:
In this paper a Maximum Likelihood estimation algorithm for error-model modelling using a stochastic embedding approach is developed. The error-model distribution is approximated by a finite Gaussian mixture. An Expectation-Maximization based algorithm is proposed to estimate the nominal model and the distribution of the parameters of the error-model by using the data from independent experiments. The benefits of our proposal are illustrated via numerical simulations.
Año de publicación:
2020
Keywords:
- Stochastic embedding
- Expectation-maximization
- Estimation
- Model errors
- Maximum likelihood
- Gaussian Mixture
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Modelo estadístico
Áreas temáticas:
- Métodos informáticos especiales