Model for the Forecast of the purchase of energy in a Utility through artificial neural networks with penetration of renewable energies


Abstract:

Research develops a planning model to carry out the prognosis of energy purchase that the distribution and marketing company is done through the use of energy demand information and with the penetration of renewable generation in the short and medium-term using a computational model of artificial neuronal networks in the MATLAB computational tool, the results obtained show the performance of this model with errors less than 1% both in training and pbkp_rediction. For the respective testing of this algorithm, the historical data of 5 years of the 'Electric Regional Enterprise Sur Centro C. A.' was taken of the city of Cuenca in Ecuador.

Año de publicación:

2021

Keywords:

  • Short -Medium Term
  • planning
  • Demand
  • RENEWABLE ENERGY
  • forecasting
  • artificial neural networks

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Energía
  • Política energética
  • Red neuronal artificial

Áreas temáticas:

  • Física aplicada
  • Economía de la tierra y la energía
  • Métodos informáticos especiales