Modeling air traffic demand for a real-time queuing network model of the National Airspace System


Abstract:

A predictive model for departure traffic demand and its route distribution at look-ahead times of 2-15 hours is proposed, for use in a queuing-network-based tool for strategic Traffic Flow Management (TFM). The proposed model uses a combination of operational data (filed flight plans, schedules), historical statistics of demand, and time of-operation-specific factors to generate statistical predictions of traffic demand for particular routes between pairs of airports or airport clusters. Specifically, a two-stage predictor for demand is proposed. First, traffic demand for an origin-destination (O-D) pair is modeled as the summation of a known demand which captures filed and scheduled traffic, and an unknown demand which is modeled as non-homogeneous Poisson process. Second, the fraction of this O-D traffic demand on each route is modeled using a linear regression, with the historical route fractions, known (filed) route fractions, and wind-adjusted transit times for the routes serving as regressors. Historical data on demands and actual traffic volumes are used to evaluate aspects of the model, including the Poisson-process assumption and the regression model for route distributions. © 2012 by The MITRE Corporation.

Año de publicación:

2012

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Simulación por computadora
    • Simulación

    Áreas temáticas de Dewey:

    • Otras ramas de la ingeniería
    • Transporte marítimo, aéreo y espacial
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 11: Ciudades y comunidades sostenibles
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA