Modeling inhalation in voice activity detection
Abstract:
The present work investigates the detection of voice activity in acoustic signals of human speech that occur in low noise environments. It proposes a method capable of differentiating between speech and pause events in an acoustic signal that includes inhalations. For this purpose, it uses components, which are based on Support Vector Machine (SVM) classifiers, specialized in detection of both silence and inhalation. In this sense, it shows that the detection of inhalations allows for improving the accurate pbkp_rediction rate of speech and pause events in a VAD system, reaching a result of 71.8%.
Año de publicación:
2019
Keywords:
- Support Vector Machine
- Silence
- Pause
- Breath
- Voiceless fricative consonants
- inhalation
- VAD
- Speech
- Voice Activity Detection
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Simulación por computadora
Áreas temáticas:
- Ciencias de la computación
- Física aplicada
- Publicidad y relaciones públicas