Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs


Abstract:

A k-labeling from the vertex set of a simple graph (Formula presented.) to a set of integers (Formula presented.) is defined to be a modular edge irregular if, for every couple of distinct edges, their modular edge weights are distinct. The modular edge weight is the remainder of the division of the sum of end vertex labels by modulo (Formula presented.). The modular edge irregularity strength of a graph is known as the maximal vertex label k, minimized over all modular edge irregular k-labelings of the graph. In this paper we describe labeling schemes with symmetrical distribution of even and odd edge weights and investigate the existence of (modular) edge irregular labelings of joins of paths and cycles with isolated vertices. We estimate the bounds of the (modular) edge irregularity strength for the join graphs (Formula presented.) and (Formula presented.) and determine the corresponding exact value of the (modular) edge irregularity strength for some fan graphs and wheel graphs in order to prove the sharpness of the presented bounds.

Año de publicación:

2022

Keywords:

  • Wheel
  • join of graphs
  • fan graph
  • (modular) irregular labeling
  • (modular) edge irregularity strength
  • Irregularity strength
  • (modular) edge irregular labeling

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Teoría de grafos
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación