Modular irregularity strength on some flower graphs


Abstract:

Let G = (V (G),E(G)) be a graph with the nonempty vertex set V (G) and the edge set E(G). Let Zn be the group of integers modulo n and let k be a positive integer. A modular irregular labeling of a graph G of order n is an edge k-labeling φ: E(G) → {1, 2,…, k}, such that the induced weight function σ: V (G) → Zn defined by (Formula Presented) for every vertex v ∈ V (G) is bijective. The minimum number k such that a graph G has a modular irregular k-labeling is called the modular irregularity strength of a graph G, denoted by ms(G). In this paper, we determine the exact values of the modular irregularity strength of some families of flower graphs, namely rose graphs, daisy graphs and sunflower graphs

Año de publicación:

2023

Keywords:

  • modular irregular labeling
  • daisy graphs
  • modular irregularity strength
  • sunflower graphs
  • rose graphs

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Teoría de grafos
  • Optimización matemática
  • Optimización matemática

Áreas temáticas: