Molecular MRI of liver fibrosis by a peptide-targeted contrast agent in an experimental mouse model
Abstract:
OBJECTIVES: Cyclic decapeptide CGLIIQKNEC (CLT1) has been demonstrated to target fibronectin-fibrin complexes in the extracellular matrix of different tumors and tissue lesions. Although liver fibrosis is characterized by an increased amount of extracellular matrix consisting of fibril-forming collagens and matrix glycoconjugates such as fibronectin, we aimed to investigate the feasibility of detecting and characterizing liver fibrosis using CLT1 peptide-targeted nanoglobular contrast agent (Gd-P) with dynamic contrast-enhanced magnetic resonance imaging in an experimental mouse model of liver fibrosis at 7 T. MATERIALS AND METHODS: Gd-P, control peptide KAREC conjugated nanoglobular contrast agent (Gd-CP), and control nontargeting nanoglobular contrast agent (Gd-C) were synthesized. Male adult C57BL/6N mice (22-25 g; N = 54) were prepared and were divided into fibrosis (n = 36) and normal (n = 18) groups. Liver fibrosis was induced in the fibrosis group through subcutaneous injection of 1:3 mixture of carbon tetrachloride (CCl4) in olive oil at a dose of 4 μL/g of body weight twice a week for 8 weeks. Dynamic contrast-enhanced MRI was performed in all animals. Dynamic contrast-enhanced magnetic resonance imaging was analyzed to yield postinjection ΔR1(t) maps for quantitative measurements. Histological analysis was also performed. RESULTS: Differential enhancements were observed and characterized between the normal and fibrotic livers using Gd-P at 0.03 mmol/kg, when compared with nontargeted controls (Gd-CP and Gd-C). For Gd-P injection, both the peak and steady-state ΔR1 of the normal livers were significantly lower than those after 4 and 8 weeks of CCl4 dosing. Liver fibrogenesis with increased amount of fibronectin in the extracellular space in insulted livers were confirmed by histological observations. CONCLUSIONS: These results indicated that dynamic contrast-enhanced magnetic resonance imaging with CLT1 peptide-targeted nanoglobular contrast agent can detect and stage liver fibrosis by probing the accumulation of fibronectin in fibrotic livers. Copyright © 2012 Lippincott Williams &Wilkins.
Año de publicación:
2013
Keywords:
- gadolinium
- MRI
- fibronectin
- Liver
- molecular imaging
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
Áreas temáticas:
- Fisiología humana
- Enfermedades
- Farmacología y terapéutica