Molecular docking and molecular dynamic study of two viral proteins associated with SARS-CoV-2 with Ivermectin


Abstract:

The global pandemic caused by the new SARS-COV-2 coronavirus makes it necessary to search for drugs for its control. Within of this research it has been known that the ivermectin drug, a FDA-approved drugs which is formulated as an 80: 20 mixture of ivermectin B1a and B1b and used commonly for parasitic infections, has an inhibitory effect on viruses, includes SARS-COV-2 at in vitro level. In the particular case of SARS-COV-2 its mechanism of action remains elusive and controversial. Interestingly, the energy of interaction of ivermectin with any of the proteins the SARS-CoV-2 and the possible structural alterations at the protein level that this drug can cause have not been reported. In this sense, we carried out a bioinformatics study with docking strategies and molecular dynamics to pbkp_redict the binding and disturbance induced by ivermectin in proteins associated with SARS-CoV-2. We use DockThor and Molegro docking scores. The DockThor server and myPresto software were used to build complexes and dynamics studies, respectively. The results obtained suggested that ivermectin is capable of docking with the 3CL protease and the HR2 domain, and may promote structural changes in these proteins by inducing unfolding/folding. Specifically, ivermectin brings protease to a significantly more deployed conformational state and the HR2 domain to a more compact state compared to the native state. Finally, it is shown that B1a and B1b macrocyclic lactones have a behavior different from to each target protein. These results suggest a possible inhibitory effect against SARS-CoV-2 due to a synergistic role of this drug to spontaneously bind …

Año de publicación:

2020

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Farmacología
    • Bioquímica

    Áreas temáticas:

    • Enfermedades
    • Bioquímica
    • Farmacología y terapéutica

    Contribuidores: