Monoatomic and dimer Mn adsorption on the Au(111) surface from first principles


Abstract:

A theoretical study based on the density functional theory of the adsorption of Mn monomers and dimers on a Au-(111) surface is presented. As necessary preliminary steps, the bulk and clean surface electronic structure are calculated, which agree well with previous reports. Then, the electronic structure of the Mn adatom, chemisorbed on four different surface geometries, is analyzed. It is found that the most stable geometry is when the Mn atom is chemisorbed on threefold coordinated sites. Using this geometry for a single adatom a second Mn atom is chemisorbed and the most stable dimer geometrical structure is calculated. The lowest-energy configuration corresponds to the molecule lying parallel to the surface, adsorbed on two topological equivalent threefold coordinated sites. It is also found that the lowest-energy magnetic configuration corresponds to the antiferromagnetic arrangement with individual magnetic moments of 4.64μB. Finally, it is concluded that the dimer is not stable and should fragment at the surface. © 2011 American Physical Society.

Año de publicación:

2011

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Nanopartícula
    • Ciencia de materiales

    Áreas temáticas:

    • Química física
    • Física
    • Química inorgánica