Monthly bigeye tuna catches forecasting usingwavelet functional autoregression


Abstract:

In this paper, the aim is to apply a functional autoregressive (FAR) model combined with multiscale wavelet analysis for monthly bigeye tuna catches forecasting in the ocean ecosystem of the equatorial Indian ocean. Wavelet technique performs a time-frequency analysis of a time series, which permits to decompose the raw time series into trend and residual components. In wavelet domain, the trend component and residual component are forecasted with a linear autoregressive model and a FAR model; respectively. Hence, the proposed forecast is the co-addition of two pbkp_redicted components. We find that the proposed forecasting strategy achieves 98% of the explained variance with reduced parsimony and high accuracy. © 2010 IEEE.

Año de publicación:

2010

Keywords:

  • Wavelet Analysis
  • forecasting

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Pronóstico
  • Estadísticas

Áreas temáticas:

  • Geología, hidrología, meteorología
  • Cartas francesas
  • Principios generales de matemáticas