Monthly bigeye tuna catches forecasting usingwavelet functional autoregression
Abstract:
In this paper, the aim is to apply a functional autoregressive (FAR) model combined with multiscale wavelet analysis for monthly bigeye tuna catches forecasting in the ocean ecosystem of the equatorial Indian ocean. Wavelet technique performs a time-frequency analysis of a time series, which permits to decompose the raw time series into trend and residual components. In wavelet domain, the trend component and residual component are forecasted with a linear autoregressive model and a FAR model; respectively. Hence, the proposed forecast is the co-addition of two pbkp_redicted components. We find that the proposed forecasting strategy achieves 98% of the explained variance with reduced parsimony and high accuracy. © 2010 IEEE.
Año de publicación:
2010
Keywords:
- Wavelet Analysis
- forecasting
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Pronóstico
- Estadísticas
Áreas temáticas:
- Geología, hidrología, meteorología
- Cartas francesas
- Principios generales de matemáticas