Monthly tuna catches forecasting using multiscale additive autoregression
Abstract:
In this paper, a forecasting strategy based on an additive autoregressive model combined with multiscale wavelet analysis to improve the accuracy of monthly tuna catches in equatorial Indian Ocean is proposed. The general idea of the proposed forecasting model is to decompose the raw tune data set into trend and residual components by using stationary wavelet transform. In wavelet domain, the trend component and residual component are forecasted with a linear autoregressive model and a nonlinear additive autoregressive model; respectively. Hence, the proposed forecast is the co-addition of two predicted components. We find that the proposed forecasting strategy achieves 98% of the explained variance with reduced parsimony and high accuracy. ©2009 IEEE.
Año de publicación:
2009
Keywords:
- Wavelet abalysis
- regression
- forecasting
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Estadísticas
- Pronóstico
Áreas temáticas de Dewey:
- Ciencias de la computación
Objetivos de Desarrollo Sostenible:
- ODS 14: Vida submarina
- ODS 8: Trabajo decente y crecimiento económico
- ODS 9: Industria, innovación e infraestructura